eGauge XML API

(v1.21)

eGauge Systems LLC

November 14, 2012

1 Overview

This document describes how to read raw XML data from an eGauge device using CGI queries. This
document applies to firmware versions v1.00 or newer. There are two types of queries: instantaneous and
stored data queries. The former reads the most recent values of all measured data, whereas the latter
reads (portions of) the historical data stored in a database built into the eGauge device.

Numeric data is returned either as integer strings or floating-point strings. The underlying format for
integer strings is either unsigned 32-bit integers (U32) or signed 64-bit integers (S64). The range of
U32 extends from 0 to 4,294,967,295. The range of S64 extends from -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807. The underlying format for floating-point strings is the IEEE-754 64-bit floating
point format.

S64 values are circular: after reaching the maximum positive value, they wrap around to the smallest
negative value (and vice versa). Also note that JavaScript cannot natively handle 64-bit values and care
must be taken to avoid overflows.

2 Instantaneous Data

Instantaneous data is updated once a second. It is fetched via the URI reference:
/cgi-bin/egauge?params

The possible values for params are described in the next section. Multiply query-parameters can be speci-
fied by separating them with an ampersand (e.g., vi&tot to specify both v1 and tot).

2.1 Query Parameters

Parameter: Type: Description:

tot n/a Requests that the totals and virtual registers calculated from the physi-
cal registers be included in the output.

noteam n/a Requests that only locally measured values be reported. The values of
any registers acquired from remote devices are omitted.

teamstat n/a Requests that the teaming status be reported.

v n/a Requests that the output be in v1.00 format as opposed to the legacy
v0.01 format. If a device is configured to read out any remote devices,
then v1.00-output is the default.

inst n/a Requests that, along with the normal register values, the instantaneous
rate-of-change of each register also be reported.

2.2 Instantaneous Data (v1.00 format)

A sample output for the v1.00 format is shown in Figure 1.

<?xml version="1.0" encoding="UTF-8" 2>
<data serial="0x78666e4d">
<ts>1284607004</ts>
<r t="P" n="Grid"><v>5196771697</v></r>
<r t="P" n="Solar"><v>21308130148</v></r>

<r t="P" n="Grg&Bth

</data>

(PHEV) "><v>17601054087</v></xr>

Figure 1: Example of instantaneous data with v1 query parameter.

The instantaneous data query returns a single element enclosed by data start and end tags. The data
element may have a serial attribute which specifies the configuration serial number as a hexa-decimal
string. This serial number is guaranteed to change whenever a change is made to the device configuration.

Thus, the serial-number can be used to detect configuration-changes.

Within the data element, the following elements may appear:

Element Name:

Type:

Description:

ts

Integer (U32)

The device-local time at which the reported measurements were ob-
tained. This is a UNIX timestamp (seconds since start of January 1st,
1970 UTC).

Struct

There is one r element per register configured in the device. Attribute
t specifies the code identifying the register’s type (see Section 2.2.1).
Attribute n specifies the register name, which may contain HTML enti-
ties to encode special characters. Attribute rt may be set to the string
total to indicate that the register is a total or virtual register whose value
has been calculated from the physical registers. Two sub-elements may
appear for each r element: v and i.

Integer (S64)

A cumulative register value expressed in a type-specific unit. Subtract-
ing two consecutive readings and dividing by the number of seconds
elapsed between the samples gives the average rate of change for the
register.

Float

The average rate of change of the register value as measured for the
most recent one-second interval.

2.2.1 Register Types

The table below specifies the code used to identify the register type, the physical quantity represented by
the code, and the unit of measurement for the rate of change of the register values.

Code: | Physical Quantity: Unit for rate of change:

Ee Irradiance W/m? (Watts per square meter)
F Frequency mH z (milli-Hertz)

1 Current mA (milli-Ampeére)

PQ Reactive Power var (Volt-Ampere reactive)

P Power W (Watt)

Q Mass-flow g/s (gram per second)

R Resistance Q (Ohm)

S Apparent Power V A (Volt-Ampere)

THD | Total Harmonic Distortion | ms (1073 - s)

T Temperature mC (milli-Centigrade Celsius)
\' Voltage mV (milli-Volt)

Numeric (unit-less)

$ Monetary 2729 . Jocale-dependent unit
a Angle m?° (milli-degrees)

v Speed m/s (meter per second)

New register-type codes may be added over time. Software processing the eGauge XML data should be
written such that it degrades gracefully when encountering an unknown register-type code.

Note that the above units apply to the rate-of-change of a register. The value of a register is the time-
integral over the rate-of-change, so the register’s unit is the above unit multiplied by time in seconds. For
example, for power, the rate-of-change unit is Watts, and therefore the register value is Watt-seconds (which
is equivalent to Joules). Watt-seconds can be converted to kilo-Watt-hours (kWh) by dividing by 3,600,000.

2.3 Instantaneous Data (legacy v0.01 format)

A sample output in the legacy format (v0.01) is shown in Figure 2. Compared to the v1.00-format, this
format is more verbose and is limited to reporting registers of type P (power). Registers with other types
are omitted in this format to maintain backwards-compatibility.

The instantaneous data query returns a single element enclosed by measurements start and end tags. Like
the data element, measurements may have a serial attribute indicating the configuration serial number.

Within the measurements element, the following elements may appear:

Element Name: Type: Description:

timestamp Integer (U32) | The device-local time at which the reported measurements were ob-
tained. This is a UNIX timestamp.

meter Struct There is one meter element per register configured in the device. At-

tribute title gives the register-name. Attribute type may be set to the
string total to indicate that the meter is a calculated total. Three sub-
elements may appear for each meter element: energy, energyWs, and
power.

energy

Float

A cumulative energy meter value expressed in units of kilo-Watt-hours
(kWh). Subtracting two consecutive readings and dividing by the
amount of time elapsed between the samples (expressed in hours)
gives average power in kilo-Watts (kW).

energyWs

Integer (S64)

Same as energy, but expressed in units of Watt-seconds (Ws).

power

Float

The average power measured for the most recent one-second interval.
Note that this may be positive or negative, depending on the direction
of the power-flow.

frequency

Float

Frequency in Hertz as measured on one of the configured voltage taps
(L1, L2, or L3). Itis presently unspecified which of the configured volt-
age taps is used to measure frequency.

voltage

Float

RMS voltage in Volts. These elements appear in lowest to highest
voltage-channel order.

current

Float

RMS current in Amperes. These elements appear in lowest to highest
current-channel order.

cpower

Float

The current value of a power component. Each voltage/current product
configured for the device gives rise to one component power. Attribute
src identifies which register the component contributes to. Attributes i
and u identify the voltage and current channels used to calculate this
power. The channel-assignment is device-specific and left unspecified
by this document.

2.4 Team Status
An eGauge device configured to read out remote devices is part of a team whose members include the
device itself and all remote devices.

The status of such a team can be obtained by passing the teamstat query parameter. The returned status
indicates the availability and status of the configured registers, some of which may be acquired from one or

more remote devices. A sample output of the team status format is shown in Figure 3.

The team status is returned in a single element enclosed by status start and end tags. Within the status

element, the following elements may appear:

Element Name:

Type:

Description:

lag

Integer (U32)

The amount of time by which the reported instantaneous data is behind
real time. This lag is normally reported in in units of milli-seconds, as
indicated by a value of ms for the attribute unit. Ideally, this lag should
be close to zero, but may be larger when fetching data from remote
devices that are slow to reach or that are temporarily unavailable.

reg

Struct

There is one such element for each register defined for the device.
These elements appear in the same order as the register (r) tags in the
v1.00 instantaneous data format. The sub-elements name, available,
last_update, excess, and last_val may appear inside this element.

available

Boolean

Indicates whether the (remote-)device supplying the data for this regis-
ter is currently reachable. A value of 1 indicates the device is reachable,
a value of 0 indicates that the device is unreachable.

last_update

Integer (U32)

UNIX timestamp of when the value for this register was updated last.

max_rate

Float

Maximum rate of change observed for this register.

leak_rate Float Rate at which the register catches up to the true value when there is an
excess (see next element).

excess Integer (S64) | A non-zero value for this element indicates that the device supplying the
data for this register was unreachable some time ago and the amount
by which the current register-value is off from the true value.

last_val Integer (S64) | The last value recorded for this register.

3 Stored Data

Stored data is updated once a minute. It is fetched via the URI reference:
/cgi-bin/egauge-show?params

This query returns energy data as rows of columns. Each row reports data for a specific point in time.
The row consists of a fixed number of columns, with one column per configured register. Various query
parameters params can be specified to select which data to retrieve and what format to return it in.

3.1 Query Parameters

Parameter:

Type:

Description:

a

n/a

Requests that the totals and virtual registers calculated from the physi-
cal register values be included as the first columns in each row. These
values are calculated according to the Totaling and Virtual Register
rules configured for the device.

n/a

Requests the output be returned in the data backup format.

n/a

Requests the output be returned in CSV (comma-separated value) for-
mat.

n/a

Requests the output of one extra data point beyond the requested
range. This is similar, but not identical, to passing a value of N + 1
for parameter n. This reason the two are not identical is because the
data-base granularity may be coarser than requested. For example, you
may be requesting data at one minute granularity, but if the data-base
has only 1-hour granularity available, passing N + 1 for parameter n has
no effect, whereas e will ensure that the hourly data-point just beyond
the last requested data-point is also included in the output. This pa-
rameter has no effect when the T or w parameters are specified. This
parameter was introduced with firmware v1.2.

n/a

Specifies that n and s parameters are specified in units of minutes.

n/a

Specifies that n and s parameters are specified in units of hours.

n/a

Specifies that n and s parameters are specified in units of days.

olalT|3

n/a

Specifies that the returned data be delta-compressed. That is, after the
first row of data, each subsequent row’s columns are expressed as a
difference relative to the previous row’s column-values.

=]

Integer (U32)

Specifies the maximum number of rows to be returned.

Integer (U32)

Specifies the number of rows to skip after outputting a row. For example,
h&s=23 would skip 23 hours worth of data after a row is output, and
would be equivalent to d.

5

Integer (U32)

Specifies the timestamp of the first row to be returned.

Integer (U32)

Specifies the timestamp of the last row to be returned.

Integer (U32)

Requests that only data newer than the specified timestamp returned.
If the timestamp lies in the future, the query will complete immediately
returning an empty data element whose wait_time attribute indicates
how many seconds have to elapse before data younger than the speci-
fied timestamp will be available.

Integer-list (U32)

Specifies a list of timestamps, ordered by decreasing value (younger to
older) for which to return data rows.

string

Specifies the time-zone to use when exporting CSV data. The for-
mat of this string is described at http://www.opengroup.org/
onlinepubs/009695399/basedefs/xbd_chap08.html under en-
vironment variable TZ. As of firmware v1.12, it is possible to omit the
value for this parameter. In this case, the device converts time-stamps
using the device-local time-zone (specified through setting “Time Zone”
in the “Date & Time” dialog).

3.2 Returned XML Data

A sample output for this query using parameters m&n=3 is shown in Figure 4.

The stored data query returns a single element enclosed by group start and end tags. Just like the data
element of the instantaneous response, the group element may have a serial attribute indicating the con-
figuration serial number.

Within the group element, the following elements may appear:

Element Name: Type:
data Struct

Description:

One such element appears for each consecutive sequence of data
rows. Attribute columns specifies the number of columns in each row.
Attribute time_stamp specifies the UNIX timestamp (in hex) for the first
row. Attribute time_delta specifies the number of seconds to be sub-
tracted to get the next row’s timestamp. Attribute epoch specifies the
UNIX timestamp (in hex) of the time at which recording started. Attribute
delta is equal to true if the data rows are delta-encoded (see below).
Attribute wait_time specifies how many seconds have to elapse before
the timestamp specified by the w parameter is available for reading.
Specifies the register-name of a column in order of increasing column.
This element may only appear in the first data element. In subsequent
data elements, the register names must remain the same as for the first
one. This element may have a t attribute which identifies the type of the
register (see 2.2.1). If the t attribute is not present, a type-code of P
(power) should be assumed.

Contains one row of data.

An individual cumulative register value. This value must be interpreted
according to the register-type specified (or implied) by the correspond-
ing cname declaration.

cname String

r Struct
c Integer (S64)

<?xml version="1.0" encoding="UTF-8" 72>
<measurements serial="0x7866e4d">
<timestamp>1284607004</timestamp>
<cpower src="Grg&Bth (PHEV)" i="11" u="1">-988
<cpower src="Solar" i="5" u="8">-1.9</cpower>
<cpower src="Grid" i="1" u="0">604.70</cpower>
<cpower src="Grid" i="3" u="1">1621.5</cpower>
<meter title="Grid">
<energy>1443.5</energy>
<energyWs>5196771697</energyWs>
<power>2226.2</power>
</meter>
<meter title="Solar">
<energy>5918.9</energy>
<energyWs>21308130148</energyWs>
<power>-1.9</power>
</meter>
<meter title="Grg&Bth (PHEV)">
<energy>4889.2</energy>
<energyWs>17601054087</energyWs>
<power>-988.9</power>
</meter>
<frequency>59.98</frequency>
<voltage>119.0</voltage>
<voltage>118.3</voltage>
<current>5.495</current>
<current>14.152</current>
<current>0.223</current>
<current>0.136</current>
</measurements>

. 9</cpower>

Figure 2: Example of instantaneous data (legacy v0.01 format).

<?xml version="1.0" encoding="UTF-8" ?>
<status>
<lag unit="ms">227</lag>
<reg>
<name>Grid</name>
<available>1</available>
<last_update>1312472842</last_update>
<excess>0</excess>
<last_val>0</last_val>
</reg>

<reg>
<name>Solar</name>
<available>0</available>
<last_update>1312472842</last_update>
<excess>0</excess>
<last_val>0</last_val>

</reg>

</status>

Figure 3: Example of team status data (teamstat query parameter).

<?xml version="1.0" encoding="UTF-8" 72>
<group serial="0x37cdd096">
<data columns="3" time_stamp="0x4c9197e4" time_delta="60" epoch="0x47395980">
<cname t="P">Grid</cname>
<cname t="P">Solar</cname>
<cname t="P">Grg&Bth (PHEV)</cname>
<r><c>5203642184</c><c>21308125431</¢c><c>17598056700</c></r>
<r><c>5203503484</c><c>21308125526</c><c>17598116405</c></r>
<r><c>5203368999</c><c>21308125626</c><c>17598176060</c></r>
</data>
</group>

Figure 4: Example of stored data.

4 Push Data Setup

In addition to polling data from an eGauge device as described in the previous sections, it is also possible
to setup eGauge to push data to an arbitrary URI. Both http (unencrypted) and https (encrypted) schemes
are supported. The data is pushed in the same XML format as described in Section 3.

There are two ways to setup an eGauge to push data to a web server: manual (custom) or via a push-
service definition. The manual setup involves specifying all the communication parameters, including the
URI, the time-interval between push updates, and the options with which the data should be pushed (e.g.,
specifying whether or not virtual registers should be pushed). The manual setup is cumbersome and error-
prone for end-customers. Using a push-service definition is much more user-friendly and also allows a
third-party service provider to automatically walk a customer through the signup or login procedure required
on the server-side to accept data from the eGauge.

4.1 Automatic Push Data Setup via Push Service Definition

To setup a push-service definition, a third-party service provider needs to provide the following pieces of
information to eGauge Systems LLC:

e The name of the service (arbitrary text string but should be no longer than 24 characters).

e The control URI (cURI) which will be used to signup the device with the third-party service.

Once this information has been received and processed by eGauge Systems LLC, a user will be able to
sign up a device with the third-party service by opening the device’s web-interface in a browser and clicking
on Settings—General Settings. The third-party service can then be selected from the drop-down
listunder Data Sharing. When the user clicks on the Save button, the following actions take place if the
selected push service has been changed:

1. The eGauge saves the name of the selected push service. The user may have to authenticate him-
or her-self with proper credentials before this step can be completed (for example, username “owner”
and password “default”, assuming a direct/LAN connection to the device exists). The eGauge will
mark the push service as being inactive until the following steps have been completed successfully.

2. The eGauge then redirects the user’s browser to the service provider’s cURI, passing various GET
parameters in the request. Specifically, the browser is directed to URI:

cURI?activate&mfg=eGauge&did=hostnamesregs=rlist&virt=vlist&ruri=rURTI

where:

c¢URI: The control URI specified by the third-party service provider.

hostname: The hostname (device-id) of the device. Note that the hostname can be changed by the
end-customer. The hostname is guaranteed to be unique only if the device is connected to a
proxy-server and it is guaranteed to be unique only for that proxy-server.

rlist: Comma-separated list of the names of the registers that the device is recording. Each name is
URI-encoded (blanks are replaced by the plus-sign (+), any other non-alpha-numeric byte by a
percentage-sign (%) followed by the hexa-decimal string encoding the byte’s value.

vlist: Comma-separated list of the names of virtual registers that have been defined for the device.
Each name is URI-encoded.

rURI: The return URI: this is the URI the browser is to be directed to upon successful completion of
the signup-process with the third-party service. This value is also URI-encoded.

3. Once the web browser opens the cURI, the third-party service can perform all the steps needed
to prepare for receiving data from the device (e.g., create a new account for the user/device or
associate an existing account with the device). Upon successful completion, the third-party ser-
vice should then redirect the browser back to the rURI via an HTTP PoST using encoding-type
multipart/form-data. The POSTed form may pass values for any of the following part names:

e uri: The URI that the eGauge should push data to. For example:
https://datacenter.example.com/push-data?01345a535a

¢ interval: The interval in seconds between updates.

e options: The options with which the data should be pushed (e.g., totals to include virtual reg-
isters or sec to include second-by-second data). Multiple options can be specified by separating
them with commas.

e user: The user-name to be supplied during a push via HTTP basic authentication. If no user-
name is specified, no basic authentication information will be supplied.

e pw: The password to be supplied during a push via HTTP basic authentication.

4. The eGauge extracts the parameters from the POSTed form and saves them. Assuming all parame-
ters have valid values, the eGauge then starts pushing data to the third-party service.

4.1.1 Example of Return-URI Form Posting

The example below illustrates how a form can be POSTed to the return URI (rURI) using a web-page that
employs JavaScript to extract the rURI and immediately post the form (using form. submit ()).

<script type="text/javascript">

function init () {
var ruri = "";
var m = location.search.substr (1).split ("&");
for (var i = 0; 1 < m.length; ++i) {
var nv = m[i].split ("=", 2);
var name = nv[0];
var value = nv.length > 1 ? nv[1l] : null;
switch (name) {
case "ruri": ruri = decodeURIComponent (value); break;
}
}
var form = document.getElementById ("form");
form.action = ruri;
form.submit ();
}
window.onload = init;
</script>

10

<form id="form" method="POST" enctype="multipart/form-data">
<input type="hidden"
value="https://www.
<input type="hidden"
<input type="hidden"
<input type="hidden"

</form>

name="uri"
example.com/push-data?01345a535a">
name="options" value="totals">

name="user" value="davidm">

name="pw" value="not-really-my-password;-)">

In a more realistic environment, the above web-page would be generated by server-side scripting (e.g.,
PHP). In such a case, the return URI could be hard-coded in the form and JavaScript would have to be
used only to submit the form.

4.2 Push Service Status Verification

Once a push service is enabled, the status can be checked at URI reference:

/push-status.html

This web page displays basic status information, such as the date and time of the last push attempt, the
HTTP response code received during that attempt, the date and time of the last successful push, and the
number of data rows delivered during that push.

The same information is also available in the form of an XML document at URI reference:

/cgi-bin/push-status

The following XML elements are returned within an uploadStatus element:

Element Name: Type: Description:

lastAttempt Integer (U32) | Lasttime an attempt was made to push data. This is a UNIX timestamp.
lastSuccess Integer (U32) | Last time data was pushed successfully. This is a UNIX timestamp.
lastUploadCount Integer (U32) | Number of data rows sent during the last successful push.
lastResponseCode | Integer (U32) | HTTP response code received during the last push attempt.

11

